A quadratic function, \(f(x) = ax^2 + bx \), is represented by the mapping diagram below.

1a. Use the mapping diagram to write down two equations in terms of \(a \) and \(b \). [2 marks]

Markscheme

\[
4a + 2b = 20 \\
a + b = 8 \quad (A1) \\
a - b = -4 \quad (A1) \quad (C2)
\]

Note: Award \((A1)(A1)\) for any two of the given or equivalent equations.

[2 marks]

1b. Find the value of \(a \). [1 mark]

Markscheme

\(a = 2 \) \((A1)(\text{ft}) \)

[1 mark]

1c. Find the value of \(b \). [1 mark]

Markscheme

\(b = 6 \) \((A1)(\text{ft}) \) \((C2) \)

Note: Follow through from their (a).

[1 mark]

1d. Calculate the \(x \)-coordinate of the vertex of the graph of \(f(x) \). [2 marks]
Markscheme

\[x = \frac{6}{2} \]

(M1)

Note: Award (M1) for correct substitution in correct formula.

\[= -1.5 \]

(A1)(R)

(C2)

[2 marks]

The graph of \(y = 2x^2 - rx + q \) is shown for \(-5 \leq x \leq 7\).

2a. Write down the value of \(q \).

[1 mark]

Markscheme

\(q = 4 \)

(A1)

(C1)

[1 mark]

2b. The axis of symmetry is \(x = 2.5 \).

Find the value of \(r \).

[2 marks]

Markscheme

\[2.5 = \frac{r}{4} \]

(M1)

\(r = 10 \)

(A1)

(C2)

[2 marks]

2c. The axis of symmetry is \(x = 2.5 \).

Write down the minimum value of \(y \).

[1 mark]
2d. The axis of symmetry is \(x = 2.5 \). Write down the range of \(y \).

Markscheme

\(-8.5 \leq y \leq 104 \)

(A1)(ft) (A1)(ft) (C2)

Notes: Award (A1)(ft) for their answer to part (c) with correct inequality signs, (A1)(ft) for 104. Follow through from their values of \(q \) and \(r \).
Accept 104 ±2 if read from graph.

[2 marks]

The following is the graph of the quadratic function \(y = f(x) \).

3a. Write down the solutions to the equation \(f(x) = 0 \).

Markscheme

\(x = 0, x = 4 \)

(A1)(A1) (C2)

Notes: Accept 0 and 4.

[2 marks]

3b. Write down the equation of the axis of symmetry of the graph of \(f(x) \).
The equation \(f(x) = 12 \) has two solutions. One of these solutions is \(x = 6 \). Use the symmetry of the graph to find the other solution.

Markscheme

\[x = 2 \quad (A1)(A1) \quad (C2) \]

Note: Award \((A1)\) for \(x = \) constant, \((A1)\) for 2.

\([2 \text{ marks}]\)

3c. The equation \(f(x) = 12 \) has two solutions. One of these solutions is \(x = 6 \). Use the symmetry of the graph to find the other solution.

Markscheme

\[x = -2 \quad (A1) \quad (C1) \]

Note: Accept \(-2\).

\([1 \text{ mark}]\)

3d. The minimum value for \(y \) is \(-4\). Write down the range of \(f(x) \).

Markscheme

\[y \geqslant -4 \quad (f(x) \geqslant -4) \quad (A1) \quad (C1) \]

Notes: Accept alternative notations.

Award \((A0)\) for use of strict inequality.

\([1 \text{ mark}]\)

The \(x \)-coordinate of the minimum point of the quadratic function \(f(x) = 2x^2 + kx + 4 \) is \(x = 1.25 \).

4a. (i) Find the value of \(k \).

\([4 \text{ marks}]\)

(ii) Calculate the \(y \)-coordinate of this minimum point.

Markscheme

(i) \(1.25 = -\frac{k}{2(1.25)} \) \((M1)\)

OR

\(f'(x) = 4x + k = 0 \) \((M1)\)

Note: Award \((M1)\) for setting the gradient function to zero.

\(k = -5 \) \((A1)\) \((C2)\)

(ii) \(2(1.25)^2 - 5(1.25) + 4 \) \((M1)\)

\(= 0.875 \) \((A1)(R)\) \((C2)\)

Note: Follow through from their \(k \).

4 marks

4b. Sketch the graph of \(y = f(x) \) for the domain \(-1 \leq x \leq 3\). \([2 \text{ marks}]\)
Consider the quadratic function \(y = f(x) \), where \(f(x) = 5 - x + ax^2 \).

5a. It is given that \(f(2) = -5 \). Find the value of \(a \).

\[-5 = 5 - (2) + a(2)^2 \quad (MI) \]

Note: Award (MI) for correct substitution in equation.

\((a =) -2 \quad (A1) \quad (C2)\)

[2 marks]

5b. Find the equation of the axis of symmetry of the graph of \(y = f(x) \).

\[x = \frac{-b}{2a} = -\frac{1}{4} \quad (A1)(A1)(ft) \quad (C2) \]

Notes: Follow through from their part (a). Award (A1)(A0)(ft) for “\(x = \) constant”. Award (A0)(A1)(ft) for \(y = -\frac{1}{4} \).

[2 marks]

5c. Write down the range of this quadratic function.

[2 marks]
6a. Write down the equation of the axis of symmetry.

Markscheme

$x = 2$

Notes: Award (AI) for “$x = \text{constant}$” (other than 2). Award (A0)(AI) for $y = 2$. Award (A0)(A1) for only seeing 2. Award (A0)(A0) for $2 = \frac{-b}{2a}$.

[2 marks]

6b. Sketch the graph of $y = f(x)$ on the axes below for $0 \leq x \leq 4$. Mark clearly on the sketch the points A, B, and C.

[3 marks]
6c. The graph of \(y = f(x) \) intersects the \(x \)-axis for a second time at point D.

Write down the \(x \)-coordinate of point D.

Markscheme

3 (A1)(B) (C1)

Notes: (A0) for coordinates. Accept \(x = 3 \) or \(D = 3 \).

[1 mark]
Part of the graph of the quadratic function f is given in the diagram below.

On this graph one of the x-intercepts is the point $(5, 0)$. The x-coordinate of the maximum point is 3. The function f is given by $f(x) = -x^2 + bx + c$, where $b, c \in \mathbb{Z}$

7a. Find the value of $f(x)$

(i) b ;

(ii) c .

Markscheme

(i) $3 = \frac{-b}{2}$ (M1)

Note: Award (M1) for correct substitution in formula.

OR

$-1 + b + c = 0$

$-25 + 5b + c = 0$

$-24 + 4b = 0$ (M1)

Notes: Award (M1) for setting up 2 correct simultaneous equations.

OR

$-2x + b = 0$ (M1)

Notes: Award (M1) for correct derivative of $f(x)$ equated to zero.

$b = 6$ (A1) (C2)

(ii) $0 = -(5)^2 + 6 \times 5 + c$

$c = -5$ (A1) (B1) (C1)

Notes: Follow through from their value for b.

Notes: Alternatively candidates may answer part (a) using the method below, and not as two separate parts.

$(x - 5)(-x + 1)$ (M1)

$-x^2 + 6x - 5$ (A1)

$b = 6 \quad c = -5$ (A1) (C3)

[3 marks]
7b. The domain of \(f \) is \(0 \leq x \leq 6 \).

Find the range of \(f \).

Markscheme

\(-5 \leq y \leq 4 \) \((AI)(ft)(AI)(ft)(AI) \) \((C3) \)

Notes: Accept \([-5, 4]\). Award \((AI)(ft)\) for \(-5\), \((AI)(ft)\) for 4. \((AI)\) for inequalities in the correct direction or brackets with values in the correct order or a clear word statement of the range. Follow through from their part (a).

[3 marks]

The graph of the quadratic function \(f(x) = 3 + 4x - x^2 \) intersects the \(y \)-axis at point A and has its vertex at point B.

8a. Find the coordinates of B.

Markscheme

\(x = -\frac{4}{-2} \) \((M1) \)

\(x = 2 \) \((AI) \)

OR

\(\frac{dy}{dx} = 4 - 2x \) \((M1) \)

\(x = 2 \) \((AI) \)

\((2, 7) \) or \(x = 2, y = 7 \) \((AI) \) \((C3) \)

Notes: Award \((M1)(AI)(A0)\) for 2, 7 without parentheses.

[3 marks]

8b. Another point, \(C \), which lies on the graph of \(y = f(x) \) has the same \(y \)-coordinate as A.

(i) Plot and label \(C \) on the graph above.

(ii) Find the \(x \)-coordinate of \(C \).
9a. Write down the value of c.

[1 mark]
9b. Find the value of \(b \).

Markscheme

\[
\frac{-b}{2(-1)} = 2 \quad (MI)
\]

Note: Award \((MI)\) for correct substitution in axis of symmetry formula.

OR

\[
y = 5 + bx - x^2
\]

\[
9 = 5 + b(2) - (2)^2 \quad (MI)
\]

Note: Award \((MI)\) for correct substitution of 9 and 2 into their quadratic equation.

\[
(b =)4 \quad (A1)(ft) \quad (C2)
\]

Note: Follow through from part (a).

9c. Find the \(x \)-intercepts of the graph of \(f \).

Markscheme

5, \(-1\) \((A1)(ft)(A1)(ft)\) \((C2)\)

Notes: Follow through from parts (a) and (b), irrespective of working shown.

9d. Write down \(f(x) \) in the form \(f(x) = -(x - p)(x + q) \).

Markscheme

\[
f(x) = -(x - 5)(x + 1) \quad (A1)(ft) \quad (CI)
\]

Notes: Follow through from part (c).
The front view of the edge of a water tank is drawn on a set of axes shown below. The edge is modelled by \(y = ax^2 + c \).

Point P has coordinates \((-3, 1.8)\), point O has coordinates \((0, 0)\) and point Q has coordinates \((3, 1.8)\).

10a. Write down the value of \(c\). \([1\ \text{mark}]\)

Markscheme

\[0 \quad (AI)(GI) \]

\([1\ \text{mark}]\)

10b. Find the value of \(a\). \([2\ \text{marks}]\)

Markscheme

\[1.8 = a(3)^2 + 0 \quad (MI) \]

OR

\[1.8 = a(-3)^2 + 0 \quad (MI) \]

Note: Award \((MI)\) for substitution of \(y = 1.8\) or \(x = 3\) and their value of \(c\) into equation. 0 may be implied.

\[a = 0.2 \quad \left(\frac{1}{5} \right) \quad (AI)(ft)(GI) \]

Note: Follow through from their answer to part (a).

Award \((GI)\) for a correct answer only.

\([2\ \text{marks}]\)

10c. Hence write down the equation of the quadratic function which models the edge of the water tank. \([1\ \text{mark}]\)

Markscheme

\[y = 0.2x^2 \quad (AI)(ft) \]

Note: Follow through from their answers to parts (a) and (b).

Answer must be an equation.

\([1\ \text{mark}]\)
10d. The water tank is shown below. It is partially filled with water.

Calculate the value of \(y \) when \(x = 2.4 \) m.

Markscheme

\[0.2 \times (2.4)^2 \quad (M1) \]

\[= 1.15 \text{ (m)} \quad (A1)(G1) \]

Notes: Award (M1) for correctly substituted formula, (A1) for correct answer. Follow through from their answer to part (c).

Award (G1) for a correct answer only.

10e. The water tank is shown below. It is partially filled with water.

State what the value of \(x \) and the value of \(y \) represent for this water tank.

Markscheme

\(y \) is the height \((A1)\)

positive value of \(x \) is half the width \((or\ equivalent)\) \((A1)\)

[2 marks]
10f. The water tank is shown below. It is partially filled with water.

When the water tank is filled to a height of $0.9\, \text{m}$, the front cross-sectional area of the water is $2.55\, \text{m}^2$.

(i) Calculate the volume of water in the tank.

The total volume of the tank is $36\, \text{m}^3$.

(ii) Calculate the percentage of water in the tank.
The graph of the quadratic function \(f(x) = ax^2 + bx + c \) intersects the y-axis at point A \((0, 5)\) and has its vertex at point B \((4, 13)\).

11a. Write down the value of \(c \).

Markscheme

\[5 \text{ (AI) (C1)} \]
[1 mark]

11b. By using the coordinates of the vertex, B, or otherwise, write down two equations in \(a \) and \(b \).

Markscheme

[3 marks]
Markscheme

at least one of the following equations required

\[a(4)^2 + 4b + 5 = 13 \]
\[4 = \frac{b}{2a} \]
\[a(8)^2 + 8b + 5 = 5 \] \(\text{(A2)(AI)} \) \(\text{(C3)} \)

Note: Award \(\text{(A2)(A0)} \) for one correct equation, or its equivalent, and \(\text{(C3)} \) for any two correct equations.

Follow through from part (a).

The equation \(a(0)^2 + b(0) = 5 \) earns no marks.

[3 marks]

11c. Find the value of \(a \) and of \(b \).

Markscheme

\[a = -\frac{1}{2}, \quad b = 4 \] \(\text{(A1)(ft)(AI)(ft)} \) \(\text{(C2)} \)

Note: Follow through from their equations in part (b), but only if their equations lead to unique solutions for \(a \) and \(b \).

[2 marks]

The diagram below shows the graph of a quadratic function. The graph passes through the points \((6, 0)\) and \((p, 0)\). The maximum point has coordinates \((0.5, 30.25)\).

![Graph of a quadratic function](image)

12a. Calculate the value of \(p \).

Markscheme

\[\frac{p+6}{2} = 0.5 \] \(\text{(MI)} \)
\[p = -5 \] \(\text{(AI)} \) \(\text{(C2)} \)

[2 marks]

12b. Given that the quadratic function has an equation \(y = -x^2 + bx + c \) where \(b, c \in \mathbb{Z} \), find \(b \) and \(c \).

[4 marks]
Markscheme

\[
\frac{-b}{2a} = 0.5 \quad (M1)
\]

\[b = 1 \quad (A1)\]

\[-0.5^2 + 0.5 + c = 30.25 \quad (M1)\]

\[c = 30 \quad (A1)(ft)\]

Note: Follow through from their value of \(b\).

OR

\[y = (6 - x)(5 + x) \quad (M1)\]

\[= 30 + x - x^2 \quad (A1)\]

\[b = 1, c = 30 \quad (A1)(A1)(ft) \quad (C4)\]

Note: Follow through from their value of \(p\) in part (a).

[4 marks]

The graph of a quadratic function \(y = f(x)\) is given below.

Write down the equation of the axis of symmetry.

[2 marks]

Markscheme

\[x = 3 \quad (A1)(A1) \quad (C2)\]

Notes: Award (A1) for \(x = \) (A1) for 3.

The mark for \(x = \) is not awarded unless a constant is seen on the other side of the equation.

[2 marks]
Markscheme

(3, −14) (Accept \(x = 3, \ y = -14 \)) \((AI)(ft)(AI)\) \((C2)\)

Note: Award \((AI)(A0)\) for missing coordinate brackets.

[2 marks]

13c. Write down the range of \(f(x) \). \([2\text{ marks}]\)

Markscheme

\(y \geq -14 \) \((AI)(AI)(ft)\) \((C2)\)

Notes: Award \((AI)\) for \(y \geq \), \((AI)(ft)\) for \(-14\).
Accept alternative notation for intervals.

[2 marks]
The following curves are sketches of the graphs of the functions given below, but in a different order. Using your graphic display calculator, match the equations to the curves, writing your answers in the table below.

(the diagrams are not to scale)

<table>
<thead>
<tr>
<th></th>
<th>Function</th>
<th>Graph label</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>$y = x^3 + 1$</td>
<td>A</td>
</tr>
<tr>
<td>(ii)</td>
<td>$y = x^2 + 3$</td>
<td>B</td>
</tr>
<tr>
<td>(iii)</td>
<td>$y = 4 - x^2$</td>
<td>C</td>
</tr>
<tr>
<td>(iv)</td>
<td>$y = 2^x + 1$</td>
<td>D</td>
</tr>
<tr>
<td>(v)</td>
<td>$y = 3^{-x} + 1$</td>
<td>E</td>
</tr>
<tr>
<td>(vi)</td>
<td>$y = 8x - 2x^2 - x^3$</td>
<td>F</td>
</tr>
</tbody>
</table>
A quadratic curve with equation \(y = ax(x - b) \) is shown in the following diagram.

The \(x \)-intercepts are at (0, 0) and (6, 0), and the vertex \(V \) is at \((h, 8)\).

15a. Find the value of \(h \).

Markscheme

\[
\frac{a + b}{2} = 3 \quad h = 3 \quad (MI)(AI) \quad (C2)
\]

Note: Award (MI) for any correct method.

[2 marks]

15b. Find the equation of the curve.

[4 marks]
16a. Factorise the expression \(x^2 - kx \).

\[x(x - k) \quad (A1) \quad (C1) \]

[1 mark]

16b. Hence solve the equation \(x^2 - kx = 0 \).

\[x = 0 \text{ or } x = k \quad (A1) \quad (C1) \]

Note: Both correct answers only.

[1 mark]
The diagram below shows the graph of the function \(f(x) = x^2 - kx \) for a particular value of \(k \).

16c. Write down the value of \(k \) for this function.

\[f(x) = x^2 - kx \]

Markscheme

\[k = 3 \quad (A1) \quad (C1) \]

[1 mark]

16d. The diagram below shows the graph of the function \(f(x) = x^2 - kx \) for a particular value of \(k \).

Find the minimum value of the function \(y = f(x) \).
Markscheme

Vertex at \(x = \frac{-(3)}{2(1)} \) \((MI) \)

Note: \((MI) \) for correct substitution in formula.

\(x = 1.5 \) \((A1)(R) \)
\(y = -2.25 \) \((A1)(R) \)

OR

\(f'(x) = 2x - 3 \) \((MI) \)

Note: \((MI) \) for correct differentiation.

\(x = 1.5 \) \((A1)(R) \)
\(y = -2.25 \) \((A1)(R) \)

OR

for finding the midpoint of their 0 and 3 \((MI) \)
\(x = 1.5 \) \((A1)(R) \)
\(y = -2.25 \) \((A1)(R) \)

Note: If final answer is given as \((1.5, -2.25)\) award a maximum of \((MI)(A1)(A0)\)

[3 marks]